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Abstract
There is ongoing interest in the kinetic energy functional Ts[ρ] in density
functional theory. The present study lies in this area and concerns the Pauli
potential VP [ρ]. A differential equation is obtained here for VP (x) in one
dimension for a general two-level system. Also, as a specific example, such a
functional of ρ(x), the ground-state Fermion density, is given for the case of N
Fermions which are harmonically confined.

PACS number: 31.15.Ew

The purpose of this letter is to construct the Pauli potential,denoted by VP and defined precisely
below (see equation (15)), from the Fermion density and its derivatives. This sheds light on
the study of the important kinetic energy functional. As special cases, the two-level system
and the model of harmonic confinement for N levels, with N arbitrary, are then investigated in
detail. It will be convenient to begin with the latter case in one dimension. For this model,
Lawes and March [1] derived the differential equation

−1

2
ρ

∂V

∂x
− ρ ′′′

8
= (N − V (x))ρ ′ (1)

for the Fermion density ρ(x) for harmonic confinement with potential energy V (x) given by

V (x) = 1
2x2. (2)

N in equation (1) is the number of Fermions, the lowest state corresponding to N = 1.
Here, instead of considering this equation in the manner proposed by Lawes and March,
namely as a third-order linear homogeneous differential equation to be solved for the Fermion
density ρ(x), given V (x) in equation (2) and N the total number of Fermions, we shall view
equation (1) as a first-order differential equation to be integrated for V (x) (of course given by
equation (2)!).

0305-4470/03/240393+06$30.00 © 2003 IOP Publishing Ltd Printed in the UK L393

http://stacks.iop.org/ja/36/L393


L394 Letter to the Editor

Using an integrating factor, V (x) is readily written in the form

V (x) = −ρ2(x)

∫ x

0

[
ρ ′′′(s)
4ρ3

+
2Nρ ′(s)

ρ3

]
ds (3)

or

V (x) = −ρ2(x)

∫ x

0

ρ ′′′(s)
4ρ3

ds + N

[
1 − ρ2(x)

ρ2(0)

]
. (4)

Since N = ∫ ∞
−∞ ρ(x) dx, this gives explicitly the form of the external potential V (x) as a

functional of the density. As will be detailed below, since [V (x) + VP (x)] is known explicitly
as a function of ρ(x) and its low-order derivatives (see equation (18)), knowledge of V [ρ], as
in equation (4) for the case of harmonic confinement, suffices to determine the Pauli potential
from ρ(x) and its derivatives.

In spite of the practical success of the so-called Slater–Kohn–Sham equations [2, 3], there
is ongoing interest in the direct calculation of the single-particle kinetic energy functional
Ts[ρ] in density functional theory (DFT), examples being in the studies of [4, 5]. One route
to calculate Ts [ρ], as already noted, is via the Pauli potential VP named by one of us ([6], see
also [7]) and reviewed briefly by Levy and Görling [8]. One definition linking VP with Ts is
through functional derivatives, namely

VP (r) = δTs

δρ(r)
− δTW

δρ(r)
(5)

where ρ(r) is the ground-state Fermion density while TW represents the von Weizsäcker
inhomogeneity kinetic energy given by Tw = ∫

tW (r) dr, where

tW (r) = 1

8

(∇ρ)2

ρ
. (6)

Below, we shall first specialize to one dimension in order to exhibit results for VP having
some degree of generality; i.e., which are valid for any confining potential V (x) in which
independent Fermions move. Our starting point is the differential virial theorem of March and
Young [9] for the positive definite kinetic energy density t (x), namely

∂t

∂x
= −1

2
ρ

∂V

∂x
+

1

8

∂3ρ

∂x3
. (7)

We now use the Euler equation of DFT, which is in fact an equation for the constancy of
the chemical potential µ throughout the entire Fermion density distribution ρ(x) [10, 11]:

µ = δTs

δρ(x)
+ V (x). (8)

Thus, we can replace ∂V/∂x in equation (7), using equation (8) plus the constancy of µ to
find

∂t

∂x
= 1

2
ρ

∂

∂x

[
δTs

δρ(x)

]
+

1

8

∂3ρ

∂x3
. (9)

Inverting equation (5), we then have a differential equation for the Pauli potential VP (x),
namely

∂

∂x
VP (x) = 2

ρ

∂t

∂x
− 1

4ρ

∂3ρ

∂x3
− ∂

∂x

[
δTW

δρ(x)

]
. (10)

But from equation (6), one has almost immediately

δTW

δρ(x)
= ρ ′2

8ρ2
− ρ ′′

4ρ
(11)
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and hence it follows from equations (10) and (11) that

∂

∂x
VP (x) = 2

ρ

∂t

∂x
− ρ ′′ρ ′

2ρ2
+

ρ ′3

4ρ3
. (12)

Since Ts = ∫
t dx, and Ts = Ts[ρ], this gives VP as a functional solely of the density ρ(x).

While equation (12) is a quite general result in one dimension for an arbitrary confining
potential energy V (x) for an arbitrary number of Fermions, let us next apply it specifically to
the case of a two-level system, for which Dawson and March [12] showed that

t (x) = tW (x) + 1
2 ρ(x)θ ′2(x). (13)

Here θ(x) is the phase appearing in the two wavefunctions, ψ1(x) and ψ2(x) say, for the two
levels, written as

ψ1(x) =
√

ρ(x) cos θ ψ2(x) =
√

ρ(x) sin θ. (14)

In recent work, Gál et al [13] have written an explicit differential equation for essentially
θ ′2/2, i.e., from equation (13), for

τ = t − tW

ρ
. (15)

Using the differential equation for τ given in [13], equation (18), and utilizing the result that

∂VP

∂x
= 2

ρ

∂

∂x
(ρτ) (16)

one obtains after some calculation that VP (x) satisfies, to within an additive constant,

1

16

(
ρV ′

P

)2[ ∫ x

−∞ ρV ′
P dx

]2 − 1

8

(
ρV ′

P

)′[ ∫ x

−∞ ρV ′
P dx

]
+

1

2ρ

∫ x

−∞
ρV ′

P dx − VP (x) +

[
3

16

(
ρ ′

ρ

)2

− 1

8

(
ρ ′′

ρ

)]
= 0. (17)

We note also that from the definition of the Pauli potential, we can write

V ′
P (x) = d

dx

[∇2
√

ρ(x)

2
√

ρ(x)

]
− V ′(x) (18)

inserting equation (18) in equation (17) then yields a ρ–V relation for the general
two-Fermion problem in one dimension. However, as the result is more complex in form
than equation (17), we prefer to regard this density–potential relation as a consequence of
solving equations (17) and (18) simultaneously. To illustrate the general two-level result for
VP (x) in one-dimensional systems, we have found an analytical solution to date only for the
harmonic confinement model summarized above in equations (1)–(4). For N = 2 we have
therefore utilized this model to plot the solution VP (x) of equation (17) in figure 1 obtained
from the harmonic two-level density ρ(x). The corresponding kinetic energy density t (x) can
then be found from this form of Pauli potential using equations (16), (15) and (6), together
again with the same two-level Fermion density ρ(x), and t (x) thus obtained is plotted in
figure 2.

Having established a quite general result for the Pauli potential VP for two-level systems,
we continue with the specific example of N harmonically confined Fermions in one dimension,
but generalized now to arbitrary N. We appeal to the recent work of Howard et al [14]. This
is readily found to yield (their equation (19) written in one dimension)

∂

∂x

[
1

ρ2

δTs

δρ(x)

]
= 1

4ρ3(x)

∂3ρ

∂x3
. (19)
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Figure 1. Pauli potential VP (x) for two-level harmonic confinement obtained from solution of
general two-level equation (17) with ρ(x), found from equation (1) with N = 2, as input.
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Figure 2. Kinetic energy density t (x) obtained from Pauli potential VP (x) in figure 1, using same
harmonic input density ρ(x) for two levels, by means of equations (16), (15) and (6).

Using equation (5) for VP , and the form of TW represented by equation (6), it is a
straightforward matter to obtain the following differential equation:

∂

∂x

[
VP (x)

ρ2

]
= 1

2ρ3

[
ρ ′′′ +

ρ ′

ρ

(
ρ ′2

ρ
− 2ρ ′′

)]
(20)

where primes denote derivatives of ρ(x) with respect to x. Omitting any additive constant,
one obtains the result
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Figure 3. Form of the Pauli potential for the one-dimensional harmonic oscillator with N = 10
and 20 closed shells. The characteristic frequency ω is taken to be 1.
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Figure 4. The Pauli potential for the harmonic oscillator with ten closed shells, in one dimension
and in three dimensions. As in figure 1, we take ω = 1.

VP (x) = ρ2(x)

∫ x ρ ′′′(s)
4ρ3

ds +
1

4

ρ ′′(x)

ρ(x)
− 1

8

[
ρ ′(x)

ρ(x)

]2

. (21)

This result could alternately be obtained by integrating equation (18) of the work of March
et al [15]. We have calculated VP (x) from equation (21) for N = 10 and 20 closed shells;
results are shown in figure 3. We note here that since δTs/δρ(x) = µ − V (x), the oscillations
in VP come entirely from the form of δTW /δρ(x).
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Indeed, for isotropic harmonic confinement, a generalization to d dimensions can be
readily effected using the results of [14]. We find then

∂

∂r

[
VP (r)

ρ2/d

]
= 1

4ρ1+2/d

[
1

d

∂

∂r
∇2ρ + ρ ′′′ + (1 + 1/d)

ρ ′

ρ

(
ρ ′2

ρ
− 2ρ ′′

)]
. (22)

For d = 3, we show in figure 4 the form of the Pauli potential for ten closed shells; the
analogous quantity in one dimension is shown also for comparison.

In summary, the main results of this letter on the Pauli potential in DFT are embodied in
equations (12), (17) and (20) in one dimension, and for the case of harmonic confinement in d
dimensions in equation (22). Though in the most general of these results, namely equation (12),
t is not known explicitly, no functional derivative of the kinetic energy functional Ts[ρ] now
appears. While equation (20) for the Pauli potential VP for harmonic confinement is attractively
compact, it must not be assumed to be the sought-after universal functional. However, this
letter represents a step along the road to such a finding, equation (17) being a quite general
one-dimensional form for two-level systems.
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